Quantitative photoacoustic imaging: fitting a model of light transport to the initial pressure distribution
نویسندگان
چکیده
Photoacoustic imaging, which generates a map of the initial acoustic pressure distribution generated by a short laser pulse, has been demonstrated by several authors. Quantitative photoacoustic imaging takes this one stage further to produce a map of the distribution of an optical property of the tissue, in this case absorption, which can then be related to a physiological parameter. In this technique, the initial pressure distribution is assumed to be proportional to the absorbed laser energy density. A model of light transport in scattering media is then used to estimate the distribution of optical properties that would result in such a pattern of absorbed energy. The light model used a finite element implementation of the diffusion equation (with the δ-E(3) approximation included to improve the accuracy at short distances inside the scattering medium). An algorithm which applies this model iteratively and converges on a quantitative estimate of the optical absorption distribution is described. 2D examples using simulated data (initial pressure maps) with and without noise are shown to converge quickly and accurately.
منابع مشابه
Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme.
A model-based inversion scheme was used to determine absolute chromophore concentrations from multiwavelength photoacoustic images. The inversion scheme incorporated a forward model, which predicted 2D images of the initial pressure distribution as a function of the spatial distribution of the chromophore concentrations. It comprised a multiwavelength diffusion based model of the light transpor...
متن کاملQuantitative in vivo measurements of blood oxygen saturation using multiwavelength photoacoustic imaging
Multiwavelength photoacoustic imaging was used to make spatially resolved measurements of blood oxygen saturation (sO2) in vivo. 2D cross-sectional images of the initial absorbed optical energy distribution in the finger were acquired at near-infrared wavelengths using a photoacoustic imaging system. Using the structural information from these images, a 2D finite element forward model of the li...
متن کاملForward and Adjoint Radiance Monte Carlo Models for Quantitative Photoacoustic Imaging
In quantitative photoacoustic imaging, the aim is to recover physiologically relevant tissue parameters such as chromophore concentrations or oxygen saturation. Obtaining accurate estimates is challenging due to the nonlinear relationship between the concentrations and the photoacoustic images. Nonlinear least squares inversions designed to tackle this problem require a model of light transport...
متن کاملB-Mode Photoacoustic Imaging using Linear Array: Numerical Study for Forward-Backward Minimum Variance Beamformer Combined with Delay-Multiply-and-Sum
Photoacoustic imaging (PAI) is a promising medical imaging modality which provides the resolution of Ultrasound (US) and the contrast of Optical imaging modalities. One of the most important challenges in PAI is image formation, especially in the case that a linear-array US transducer is used for data acquisition. This is due to the fact that in the linear-array scenario, there is only 60 degre...
متن کاملQuantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005